Equivalences for Morse Homology
نویسنده
چکیده
An explicit isomorphism between Morse homology and singular homology is constructed via the technique of pseudo-cycles. Given a Morse cycle as a formal sum of critical points of a Morse function, the unstable manifolds for the negative gradient flow are compactified in a suitable way, such that gluing them appropriately leads to a pseudo-cycle and a well-defined integral homology class in singular homology.
منابع مشابه
ON THE USE OF KULSHAMMER TYPE INVARIANTS IN REPRESENTATION THEORY
Since 2005 a new powerful invariant of an algebra has emerged using the earlier work of Horvath, Hethelyi, Kulshammer and Murray. The authors studied Morita invariance of a sequence of ideals of the center of a nite dimensional algebra over a eld of nite characteristic. It was shown that the sequence of ideals is actually a derived invariant, and most recently a slightly modied version o...
متن کاملFunctoriality and duality in Morse-Conley-Floer homology
In [13] a homology theory –Morse-Conley-Floer homology– for isolated invariant sets of arbitrary flows on finite dimensional manifolds is developed. In this paper we investigate functoriality and duality of this homology theory. As a preliminary we investigate functoriality in Morse homology. Functoriality for Morse homology of closed manifolds is known [1, 2, 3, 8, 14], but the proofs use isom...
متن کاملComputing Persistent Homology via Discrete Morse Theory
This report provides theoretical justification for the use of discrete Morse theory for the computation of homology and persistent homology, an overview of the state of the art for the computation of discrete Morse matchings and motivation for an interest in these computations, particularly from the point of view of topological data analysis. Additionally, a new simulated annealing based method...
متن کاملMorse-Conley-Floer Homology
For Morse-Smale pairs on a smooth, closed manifold the MorseSmale-Witten chain complex can be defined. The associated Morse homology is isomorphic to the singular homology of the manifold and yields the classical Morse relations for Morse functions. A similar approach can be used to define homological invariants for isolated invariant sets of flows on a smooth manifold, which gives an analogue ...
متن کاملComputing homology and persistent homology using iterated Morse decomposition
In this paper we present a new approach to computing homology (with field coefficients) and persistent homology. We use concepts from discrete Morse theory, to provide an algorithm which can be expressed solely in terms of simple graph theoretical operations. We use iterated Morse decomposition, which allows us to sidetrack many problems related to the standard discrete Morse theory. In particu...
متن کامل